合成生物学:发展前景
在高科技迅猛发展的时代,合成生物学技术是各领域中最无法忽视的一项新兴技术。合成生物学是以“建构”为核心的新型交叉技术学科,将生物学与其他学科及范式进行深度交叉融合,充分发挥定量、设计、工程化等特征,正在发展成为一个基础性和工具性的学科,被认为是认识生命的钥匙和改变未来的颠覆性技术,被誉为“第三次生物科学革命”,是推动人类从“认识生命”(“造物致知”)到“设计生命”(“造物致用”)跨越的重要技术路径。
目前,合成生物学已广泛运用于医疗健康、化工、农业、绿色能源、日化美妆、生物基材料、食品消费等领域,展现出强大的产业应用潜力。
合成生物学的优势
合成生物制造是一种具有潜力的绿色生产方式,随着全球变暖及各国碳中和的提出,合成生物制造无疑成为潜在的最优解之一。
合成生物制造可以降低工业过程能耗、物耗,减少废物排放与空气、水及土壤污染,以及大幅度降低生产成本,提升产业竞争力。根据创新和高技术发展司报告,和石化路线相比,生物制造产品平均节能减排30%-50%,未来潜力将达到50%-70%,以基础化学品1,3-丙二醇合成生物制造为例;与石油路线相比,生物法制造的二氧化碳减排63%,原料成本下降37%,能耗减少30%。
在全球和国家倡导”碳中和”的背景下,合成生物学无疑提供了非常好的解决方案,2014年世界经济合作与发展组织(OECD)发布《合成生物学政策新议题》报告,预测未来将有35%的化学品和其他工业产品可能涉及生物制造,世界自然基金会(WWF)估测到2030年,工业生物技术每年将可降低10亿~25亿吨二氧化碳排放。
以基因合成、编辑为代表的合成生物学在过去20年间有了快速的发展,支撑产业迭代、升级。
合成生物学从概念向产业的转变,最主要在于底层技术的创新,基因合成从传统的小片段化学合成发展到第四代酶促合成技术,合成片段的长度和效率逐步提升;基因编辑经历了从ZFN→TALEN→CRISPR/Cas9技术的升级,基因编辑效率和准确度都有了极大的提升。
从Webof Science每年发表的合成生物学领域相关论文数量来看,2000年,领域内发表的论文数量为809篇,2022年达到了17456篇,增长超过20倍;从专利情况看,每年申请的合成生物学相关专利也由2004年的59项增长到2022年2899项,增长了48倍。同时,随着多组学的出现,从遗传物质DNA到最终转录产物蛋白质,功能解析越来越清楚,分子间相互作用网络也更加明晰,促进了合成生物学DBTL研发模式的发展,合成生物学处于冉冉上升期。
生物铸造厂模式出现,给合成生物学产品开发和数据积累提供了优质的研发平台。
生物铸造厂是以自然界已有的自然物质或合成物质为基础,构建基于生物体的新型制造平台,将生物设计、研发、制造过程变成工程设计问题,通过对自然生物的操纵来获取原创性新材料、新器件、新系统和新平台,实现高价值材料和设备的“按需设计与生产”,实现生物元器件和生物制造平台的模块化标准化设计,推动生物制造平台质的突破。
以Ginkgo bioworks为代表的合成生物学平台型公司建立了相对成熟的生物铸造厂商业模式,通过将DNA编辑、合成、插入、细胞水平测试,强化数据分析能力,并将数据科学应用到下一次测试中去,形成了研发闭环。生物铸造厂规模效应突出,以Ginkgo bioworks为例,在生物铸造厂投入使用后,每年经济产出提升了3倍,而每个工作单元的平均支出却能够下降约50%。
底层技术成本指数级下降,带来下游合成生物学应用爆发。
随着生命科学技术的发展和应用场景的拓宽,底层的基因合成与基因测序服务能力得到了极大的提升,价格上,基因测序与基因合成的成本下降速率明显快于摩尔定律,2021年每Mb的基因合成成本约为0.006美元,而每个基因组的测序成本约为562美元,更低的成本使得这些技术大规模应用成为了可能。
精准发酵替代传统发酵,成本下降带来竞争优势。
随着发酵工程的发展,精准发酵逐渐成为合成生物学放大生产的主流,精准发酵通过对于发酵微生物进行基因修饰,已达到目标产物最高得率。精准发酵的优势在于:1)目标产物相对可控;2)成本、能耗降低;3)污染降低。
中国合成生物产业处于高速发展时期,国家持续出台政策助力产业发展糖心vlog官网。
从“十二五”,国家提出对生物制造技术的支持;到“十三五”,国家将合成生物技术列为引领产业变革的颠覆性技术之一。此后国家出台一系列政策支持合成生物的发展,“十四五”更是强调了对生物合成的应用,在政策的大力支持下,合成生物产业也迎来了重要的发展机遇。
合成生物学的应用场景
目前,合成生物学已经在包括医疗健康、化工、农业、食品等领域实现了应用;此外,在医药领域,目前采用生物途径进行药物制造已经展现出了早期商业应用迹象;而在一些使用基因工程植物来固定二氧化碳的应用中,在前端研究领域表现出可行性,但在商业应用层面还未取得较大突破。
合成生物学不同应用领域的技术发展情况
医疗健康领域
合成生物学在医疗健康领域的应用广泛,包括创新疗法(细胞免疫疗法、RNA药物、微生态疗法、基因编辑相关应用)、体外检测、医疗耗材、药物成分生产和制药用酶等诸多方向。
合成生物学在医疗健康多个细分领域得到广泛应用,不仅可以通过设计全新的细胞内代谢途径,使医药产品能够通过微生物细胞利用廉价糖类等原料进行合成,还可以根据不同的疾病和致病机制,进行人工设计、构建适宜的治疗性基因回路,在载体的协助下植入人体,通过纠正机体有功能缺陷的回路,实现治疗疾病的目的。
化学品、材料和能源
合成生物学在化工领域的应用主要包含材料和化学品、化工用酶、生物燃料等方向,例如,生物可降解塑料、生物燃料(生物柴油、燃料乙醇)等;合成生物学可优化化学品和材料的生产能力与效率。
随着合成生物学快速发展,对细胞代谢和调控认知的深入以及技术手段的进步,使得优化改造、从头设计合成高效生产菌种成为可能,可再生化学品与聚合材料的生产能力与效率大大提升,与此同时可大幅减少原材料和能源消耗,大幅降低生产成本。
材料领域相关公司产品:耐用生物膜:Zymergen开发了一种透明的生物膜,这种生物膜薄、柔韧、耐用,可用于在智能手机、电视屏幕和皮肤等多种表面传输触摸。智能包装:Infarm创造了一种可在物体周围折叠的可再生塑料;Earthpac利用马铃薯加工废水中的淀粉生产可生物降解的餐具和托盘。
合成生物的能源应用:以农林废物资源、城市有机垃圾资源,合成气和二氧化碳等为原料,利用人工设计的合成生物生产获得的不同产品类型的能源产品。合成生物能源包括生物乙醇、生物柴油、高级醇等生物液体燃料、生物沼气(甲烷)、生物氢气及生物电等。目前全球至少有60多个国家开始推行生物能源,其中巴西、美国、欧盟贡献了全球消费量的84%。
农业领域
合成生物学在农业领域的应用主要涉及作物增产、虫害防治、动物饲料及作物改良等方向,例如,利用微生物固氮来帮助作物增产,通过生物发酵生产蛋白质为牲畜提供蛋白饲料,利用基因编辑技术改良作物等。
1、农业产量主要受限于光捕获效率、生物量积累效率和收获指数等。目前,植物的光捕获率已接近最大理论值,且大幅度提高收获指数已无可能。但合成生物可以通过提高光合碳同化效率如提高Rubisco酶活性、引入碳浓缩机制和减少碳损耗,以及提高光能利用效率等提高农业产量。
2、合成生物可以通过构建人工高效固氮体系为农作物提供氮源,从而部分替代或大幅度减少化学氮肥的使用,减轻水体富营养化和大气污染等问题。
3、植物合成生物学可以通过改造现有代谢途径或者从头合成新的人工代谢途径对作物进行改良或者获得新的代谢产物,提高作物营养价值,规模化生产天然产物。相关公司产品:Pivot Bio研发出了针对玉米作物的微生物固氮产品,促使特定的微生物在作物根部释放氮,以满足作物日常氮需求。
食品领域
合成生物学在食品领域的应用包含肉类和乳制品、饮品、食品安全、调味剂和添加剂等多个方向。
合成生物学可以通过使用程序化的单克隆细胞工厂、工程微生物群落或无细胞生物合成平台来改善食品生产。这有利于摆脱传统农牧业的弊端,同时提高资源转化效率。世界资源研究所分析,到2050年,相比2010年粮食缺口高达56%,牛奶和肉类的需求将更大。
合成肉类:合成肉包括植物蛋白生产的植物肉、动物细胞培养的养殖肉以及其他可持续蛋白生产的肉类类似物(如藻类和真菌蛋白质)。植物肉利用大豆、小麦、豌豆等合成。养殖肉又称体外肉,通过将动物的胚胎干细胞或肌肉组织在生物反应器中增殖,然后用支架或微载体获得特定的肌纤维和大块组织。
无动物生物工程奶:使用大肠杆菌或酵母细胞工厂培养牛奶的主要成分,乳清蛋白、酪蛋白等,然后将纯化的蛋白与水、脂肪以及其他成分(低聚糖、维生素等)混合即可制成合成牛奶。
食品添加剂:用细胞工厂生产取代传统的植物提取甜味剂等。
合成生物学在各领域的应用前景
合成生物学的市场前景糖心vlog
合成生物技术发展成为传统技术的充分补充和替代,广泛用于医疗、化工、农业、消费品、食品等终端领域。在政策和技术的双重驱动下,截至2021年底,全球合成生物学相关市场行业整体爆发式增长,市场规模达到736.93亿美元,较2020年增长767.5%。中国合成生物学从基础研究到产业发展进入了快车道,2021年市场规模约为64.16亿美元,同比增长158.92%。
从细分市场来看,医疗健康、科研服务和化工行业是主要应用领域。其中增长最明显的是医疗领域,超过七成的药物发现来自生物,2021年市场规模达到687.24亿美元;其次是化工领域,合成生物学市场规模18.22亿美元;科研服务领域合成生物学市场规模18.11亿美元;农业领域合成生物学市场规模为4.97亿美元;食品领域合成生物学市场规模为5.08亿美元;其他领域合成生物学市场规模为3.31亿美元。
合成生物学将在未来10年内对各个行业产生重要影响。随着合成生物学的应用,医学、美容行业将在5年内迎来一定的产品替代和/或工艺改进,纺织品、食品、农业、化学品等各个行业也都将受到合成生物学技术进步带来的影响。
随着应用场景的增多和技术的改善,市场逐渐扩容,根据CB Insights的预测,2019年全球合成生物学市场规模约为53亿美元,到2024年将扩容至约189亿美元,2019-2024年的复合增长率(CAGR)为28.8%,其中占比最高的为医疗健康细分应用领域。
根据麦肯锡的分析,预计在2030-2040年,合成生物学每年带来的经济影响将达到1.8至3.6万亿美元,到2025年,合成生物学与生物制造的经济影响将达到1000亿美元,同时生物制造的产品可以覆盖60%化学制造的产品,并在继续拓展边界。而应用最清晰的医疗健康领域每年受到的直接经济影响在未来20年内达到0.5至1.2万亿美元。
在医疗医学领域,合成生物学的快速发展带来了新鲜血液与动力。
合成生物学应用于天然药物、抗生素等的人工合成潜力已经得到证明。
化学法生产化学品大多集中于结构清晰、简单的化学物质,而对于天然药物等大分子化合物大多只能来源于植物、动物、真菌细菌等自然来源的提取。但由于其提取工艺能耗大、提取率低,目前大部分仅能通过全合成或半合成的方式制得,这成为制约天然药物价格的重要原因之一。
通过合成生物学手段,将产生这些代谢产物的基因簇进行异源表达并利用发酵工程进行大规模制备,将成为解决药品供应和价格昂贵问题的方法之一。目前,利用重组大肠杆菌细胞工厂合成体紫杉二烯,重组酵母细胞工厂生产青蒿酸和人参皂苷等,都已经打通合成路线或即将达到产业化水平。抗氧化作用显著的白藜芦醇(resveratrol)、具有心血管保健作用的柚皮素(naringenin)、抗病毒和凝血作用显著的咖啡酸(caffeic acid)等也有较长的研究历史,在酿酒酵母和大肠杆菌中均已构建工程菌。
合成生物学可提升疫苗研制效率。
合成生物学可使疫苗开发模块化,不同病原微生物的保护性抗原对应可变模块,根据中和性抗体来设计并合成与之相对应的保护性抗原,即可快速制造适应新疫情的病毒疫苗。在疫情突发时,合成生物学技术可以根据病原基因组序列进行迅速分析,并快速人工合成保护性抗原基因,大大提升疫苗的研制效率。
合成生物学在应急疫苗研发流程中的作用
此外,合成生物学在干细胞与再生医学、药物载体的靶向递送和治疗等领域均能发挥重要作用。
目前已经开发的合成生物学路线包括:
1、CAR-T
通过对CAR活性的小分子远程控制来改善嵌合抗原受体T细胞(CAR-T)治疗并增强靶细胞特异性。遥控路线具有多个CAR,可用于通过施用小分子二聚体来重建CAR活性,从而实现对T细胞抗肿瘤功能的控制。
SynNotch是一种可编程的受体(第一个CAR),可以感知细胞表面配体并通过激活基因表达来做出反应。这种响应可以与第二个CAR的产生耦合,然后CAR能够识别第二个配体,从而实现“与门”功能。
CAR-T合成生物学
2、基因回路tangxin
设计自主治疗患病组织的合成sense and respond路线,其中炎症细胞因子的传感与抗炎细胞因子的分泌耦合。
基因回路合成生物学
合成生物学未来的发展应包括开发人源性成分,开发更大容量的载体以适应更大、更复杂的路线,并使用合成路线来指导细胞分化(例如,从诱导多能干细胞分化成免疫效应细胞)。